Categories
读书有感

统计学习精要(The Elements of Statistical Learning)课堂笔记(二十一):SMO算法

1. SVM优化问题

1) 原问题

2) 拉格朗日形式的表述

其中,

3) 对偶问题

4) SVM分类器

(i)

(ii) 选,然后

(iii)SVM分类器

2. SMO算法

1) 基本思想:迭代下降、坐标下降

一次要选择两个变量(否则会破坏的约束),之后就可以解这个双变量优化问题。

2) 两个变量的优化

任取,作为变量,其他作为常量。

展开的矩阵大致如下:

目标函数=

这样,,,

约束(对应对偶问题)

,这里d代表其余不改变的那些

化到单变量的话,

所以,

  • 目标函数= ,最优条件
  • 约束 ,其中分别为lower/upper bound。故必有最优点在L、H之间或者L、H之一。
  • ,可以解得

这里虽然需要迭代很多次,但是迭代的每一步都比较快。

至于如何选择,第一个变量可以选择,同时最大。第二个变量选择最大的。

Categories
读书有感

统计学习精要(The Elements of Statistical Learning)课堂笔记(二十):SVM

这节课主要是讲线性优化的对偶问题。感觉这东西貌似在运筹学的时候被折腾过一遍,现在又来了-_-||

附赠个老的掉牙的段子...

有人问经济学家一个数学问题,经济学家表示不会解...

然后那个人把这个数学问题转成了一个等价的最优化问题,经济学家立马就解出来了...

好吧,我还是乖乖的赘述一遍对偶问题吧,表示被各种经济学最优化问题折磨过的孩子这点儿真是不在话下。

--------------------------------------------------------------------

1. 对偶问题的一般情况

1) 优化问题

一个典型的最优化问题形如:

(不等式约束)

(等式约束)

2) 优化问题的Lagrange (拉格朗日)函数

3) 对偶函数

称为该优化问题的对偶函数。此时,

,显然这个时候一阶偏导数为0。

4) 对偶问题

我们称为原优化问题的对偶问题,可化为最优化问题的标准形式

如果原优化问题为凸优化,则必为凹函数,从而最终的标准形式依旧是一个凸优化问题。

5) 弱对偶性

为原问题的解,则,且.

为对偶问题的解,则; .

定理(弱对偶性),即对偶问题的优化值必然小于等于原问题优化值。

6) 强对偶性

时,两者具有强对偶性;满足该条件的称之为constraint qualifications,如Sliter定理

强对偶性满足的时候,原优化问题就可以化为一个二步优化问题了。

7) KTT条件(库恩-塔克条件)

局部最优化成立的必要条件:

(一阶条件)

注:SVM满足强对偶性,所以可以直接解对偶问题。

2. 对偶问题应用于SVM

1) SVM的最优化问题

上节课可知,SVM的最优化问题为:

写成标准形式就是

这样这里总计有2N个约束条件。

对应的Lagrange函数为:

这样一阶条件就是


这样最后我们有.

3) 对偶函数

这里的对偶函数就是

4) 对偶问题

5) KKT条件

6) SVM分类器

  • 解对偶问题,得到,
  • 计算
  • 计算:找到一个(非边界上),从而满足。由,我们可得
  • 平面分类器: , ,故只与内积有关。

这样下节课就会讲到解对偶问题的方法,以及SVM和kernel methods的联系。

Categories
读书有感

≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(十九):SVM

支持向量机——最大边距方法

前言:这节课我人在北京,只能回来之后抄一下笔记,然后对着书和wiki理解一下....有什么错误还请大家及时指出。

------------------------------

1. 背景

  • 问题:两类分类问题
  • 数据:有标识、有监督
  • 模型:,线性模型
  • 准则:最大边距

先说一下个人理解的SVM的直觉。下图来自wiki。二次元中的SVM就是想找到一条直线(或者对应高维空间下的超平面)来尽可能的分割开两组数据。比如图中H3和H2这两条直线虽然都可以分开这两组数据,但是显然H3离两组数据都远一些——这就是SVM遵循的最大边距准则。

svm1

而在实践中,我们把二类分类分别作为正负1,所以两条距离该分割线平行距离1的直线就应景而生。在这两条直线上的点我们称之为支持向量(SV)。

2. 线性可分时的SVM

1) 线性可分:存在使得为分割超平面。

2) 一个点到超平面的距离:

3) 分割超平面的正则表示

数据集到某个超平面的距离。将标准化,则

4) 最大边距准则

5) 线性可分时的SVM

等同于

这样就有了一个sign分类器。

6) support vector:分离超平面落在隔离带的边缘,满足被称为SV。

7) 优点:

  • 对测试误差错识小
  • 稀疏性
  • 自然直观
  • 有效
  • 有理论深度(这话的意思是,又可以造出来一堆论文了么?)

3.一般的(线性)SVM

不满足约束的时候,可以做一些放松——引入作为松弛变量。

这样原来的最优化问题就变成

最优的分类器则为

svm_graph

这里大概示意了的应用场景。左边是上述完全可分的情况,右边是没法分开,所以我们容忍一些误差,只要误差之和在一个可以接受的范围之内。

4.非线性的SVM

这里的直觉大概是,在低维空间较为稠密的点,可以在高维空间下变得稀疏。从而可能可以找到一个高维空间的线性平面,把他们分开。

原来的数据集是:

然后定义一个从低维到高维的映射:,使得。其中原本属于,此时被映射到一个高维的,可为无限维Hilbert空间(这里我只是照抄笔记...)。

映射之后的,之后就是传统的寻找一个线性平面。

的例子:

,这样就打散到一个高维的空间(圆)。

下节课是线性SVM的计算。

Categories
Wordpress 网站建设

落园的春日劫难

好像很规律的似的,每半年落园就要大折腾我一次...反正鼓捣wordpress这么长时间了,已然习惯了。

这次是莫名其妙的服务器宕机,然后联系客服无果(昨天才算联系到了一个人...),然后受不了网站一直挂在那里,果断搬家了(最纠结的是当时还在上海到北京的高铁上,3G+翻墙各种不稳定)。转投BlueHost的怀抱,信用卡刷刷的顺便心里小小滴一下血...

然后悲催的发现最新的备份居然是去年10月的,我...只能郁郁的先把这些文章导进去...然后开始漫天的搜,果然还是有解决策略的(隐约记得谁说过可以通过RSS恢复)。

然后第一件事儿就是去装个了备份插件,这次学乖了直接放在Google Drive上,用的是UpdraftPlus - Backup/Restore

在众多日志中觉得这个"通过Google Reader恢复WordPress日志"还算靠谱,就比着葫芦画瓢了一番。文章是恢复了,但是里面那堆Latex公式就彻底挂了...无奈之下,去看google reader直接导出来的xml(atom格式)文件,发现厚道的是公式居然还在图片的alt里面(需要先decode一下),形如这个:

<span><img src="tex_5117609d4239740f7e4072b9508c4742.gif" 
style="vertical-align:middle;border:none;padding-bottom:1px" alt="n_{L}"></span>是网络输出的个数。</li>

这样就可以直接正则表达式提取了...我是用的notepad++(试了一下R的XmltoList,但是中文全给我转成UTF8的样子让我很不爽,果断放弃了),所以输入的是

<img(.*?) alt="(.*?)">

然后替换为:

\

这样一下子就把公式又换成$$的形式了。

上面链接里的php文件有点问题,不能恢复tag。我也懒的整了,依旧是正则表达式提取:

<category term="(.*?)"/>

然后替换为半角逗号分割

\1,

好在日志不是太多,100多篇手动又检查了一遍(主要是有些图片丢了需要重新上传)。这样貌似就正常了。多说有点抽风,没法把评论备份到本地数据库了,不过现在看着还算正常我也就懒得去跟它纠结了。

暂时先这样吧,然后去恢复英文博客去...其实我对英文博客更没底儿,不知道上个备份在哪儿-_-||反正搞独立博客就是一折腾。忍了。

Categories
读书有感

≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(十八):神经网络

前馈神经网,BP算法,AE(自编码器,Auto-Encoders)

1. 前馈神经网(Multilayer Feedforward Network)

fig 12.8

前馈神经网大致就是这个样子,一层一层的结构。这样,我们就由第一代的神经元系统繁殖出来了一个神经元群落...看起来很高深的样子。

先说一些参数和记号:

  • L:网络的层次
  • :表示第层中神经元的个数。特别的,为所有输入变量的个数(x的维数),是网络输出的个数。
  • :相邻两层()之间的连接的权重。
  • :第层第个神经元的偏置值。
  • ,,:第层第个神经元的状态值。
  • ,,:第层第个神经元的活性(activation),或称为输出。

基本关系:

模型:的映射。

2. BP算法(网络学习/拟合)

给定数据,定义

那么

接下来的拟合优化问题就是最小化。这里可以采用梯度下降:

,所以需要求得这两个梯度(偏导)项。

定义,这样,其中

类似的,

为了解这个东西,我们需要后向递归。

首先在第L层:,然后

For L-1,...,1,我们有,这样就一直可以迭代反推至第一层。

3. AE(自编码器,Auto-Encoders)

auto-encoder

自编码器可以算是一个简化的神经网,大致只有三层:0,1,2。其中输入是x,输出也是x,但是中间进行了一个过滤。直观的讲,就像一个文件压缩了一下,又解压缩。中间压缩包的体积要比源文件小,但是信息却基本没有损失。

AE基本上想达到两个目标:

1. ,即中间那层的维数小于原始输入的维数p。

2. 或者输出的均值非常小,即从第一层到最上面一层的输出较为稀疏,不是很强烈的关联。

下节课会讲到SVM。