Categories
游来游去

青藏行纪(一):漫漫青藏线

青藏行纪连载开始,一天一更新。哎,要朝八晚五的人伤不起啊,所有时间都用来睡觉还不够...果然有对比才知道以前的生活是多么的自由,T_T

----------------------
如果说,飞抵兰州第一反应是有好吃的兰州拉面,然后沿着张掖街走走就满足了;如果说,兰州到西宁不过两个小时我都觉得还是漫长,那其实在踏上开往拉萨的火车之前,我的心里一直在嘀咕自己何苦这么折腾,大老远的跑过来还要坐二十多个小时的火车。然而,对于青藏,心里长的那根草总要拔拔,难得辞职之后有那么一小段自由时间,此时不出发更待何时!

DSC02472-r

澄澈的画
直到出了西宁,看到青海湖,一切的抱怨都成空了!无比明智的感慨自己是火车进藏,一路上的风景简直是美赞了。看着窗外的云,慢慢的卷起来,洁白的翅膀忽然就凝成了一团黑雾,霸占着天空狞笑。另一边,阳关普洒,然后自然的色彩由近及远,慢慢抹上。近处是枯黄的苍荑;然后一条条绿色穿梭其间,慢慢铺展开;偶尔黑白的星星点点散落,那是牦牛和绵羊在努力的吃东西;而远至天际,出了悠悠的蓝紫色的群山铺底,偶有沟壑藏匿着阴影,中间那一抹清亮的蓝色正是宛若明珠的青海湖。这一切都是在慢慢彼此交织的,阳关也调皮的变换着角度,生怕错过了这样的热闹,还舞出彩虹的绸带来助兴。看着看着,就突然不知道那白白的云是怎么沉入那蓝蓝的水,又不时抬起头来喘口气似的。远山忽明忽暗,近水始终静静的,唯有云彩穿梭其中,仿若拨弄琴弦的姑娘,一时顿悟为什么那年在敦煌看到的壁画上,为什么那么多仙女携着飞天彩带了。原来云彩,亦是最好的画笔。

DSC02425-r

彩虹助兴。
DSC02292-r

傍晚,火开始欢乐的烧云彩。
DSC02515-r

一觉醒来,已是银装素裹,分外妖娆。
DSC02539-r

Categories
网络新发现

Machine learning for KIDS?

在慢慢火车旅途上,看看书还是不错的消遣。第二个kindle也挂了之后,只能借助ipad勉强看看书了。还好吧,至少还能集中注意力,不会手贱的不停刷微博什么的。

离开上海之前,两天奋战看完了备受推崇的「三体」三部曲,不禁对作者的想象力、天文、物理功底所深深折服。总有一段时间觉得自己的思维格外的开阔,喜欢这样智力上的挑战。而接下来打定主意在路上看的,第一本就是说「machine learning for hackers」,听说是R与数据挖掘教程之一,很多人多次提及过,思喆大哥貌似还评论过,却忘了大家是褒是贬。当然,这其中还有一层原因是,适合自己的才是最好的,就像我从来不能如同在经济学家面前声称自己学过经济学一样,在统计学phd面前号称自己学过统计学(cannot speak the statistics language well)。根基差太远。

然而看过了这本书之后,只想问一句,are you kidding?通篇都是各种回归就罢了,还常常一整页就一幅图(至少我看的版本中如此),每个例子都有配图(当然我不否认可视化对于帮助理解数据的意义,但亲啊,是不是有点多了啊?),这样稀哩哗啦的居然凑了300多页。我只想说,如果我的小册子也这么写,突破500页指日可待啊。

好吧,回到价值评价。这本书信息量真的不怎么大。我不是machine learning科班出身,没学过这东西的发展史,不知道这些模型的历史地位和演化过程,只是断断续续、这里一点、那里一片的接触了一些模型(当然回归模型除外,计量的招牌菜啊,虽然我一度觉得我计量学的也不咋地)。看完这本书,先是简单的线性回归,然后polynomial拟合,然后是logit回归等等,中间加上一些莫名其妙的检验指标,各种看着不爽。至少,以一种检验和model selection的形式出现好不好,显得多少严格一点嘛。

后面是支持向量机,然后居然还简单的涉及了sna。不过当我看到gephi的时候....好吧。这作者真心喜欢可视化啊。

说到机器学习,可能我没什么评头论足的资格。不过仗着最近看了一下「数学之美」(虽然只是06年的google黑板报版),还是觉得对这个领域的大致思路有所了解的。关于learning,个人认为除了各种回归等常规prediction之外就是bayesian规则下的模拟了。后者的话,个人倾向于"按需定制",模拟还是好好的从头开始写代码比较稳妥。搞不懂这本书的思路,不知道target group是哪群。

有的时候各个学科还真是殊途同归的。我所接触的很多学科的方法,无非的指向只有一个:如何从信息中提取信息,或者更简单的,如何降维。从这个角度看,经济学也没有落后太多嘛,只是出发点和原始信息集不一样。其实,平心而论,经济学的思维方式基本是数学分析(演绎法)+统计学(归纳法)的结合,虽然到个人层面上各有所侧重,但还是很大程度上相辅相成的,没法一条腿走路。所以,有志于挑战自己智力和创造力的同志们,可以偶尔学学经济学哦~嘻嘻。绝对是系统的对思维方式和分析能力的训练。

Categories
我的生活状态

最近落园无人打理...

抱歉又让大家看到这张图片...落园最近将沉寂20天左右,还请见谅.

出去玩耍咯,对于一个离开学校的人来说,唯一的暑假就是自己给自己放假,在开始新工作之前,先延迟一下入职时间.嗯,出去玩咯.这次,就不用网络约束自己了,哈哈.要玩个爽快.

各位,落园关门谢客,email也可能不回,回见哦.

Vacation mode进行中...

Categories
事儿关经济

把结论假设出来?——记郁彬讲座

一如前篇日志所述,这次帝都之行最大的收获就是有幸聆听了郁彬大神(Berkeley统计系主任)的讲座——还是自由交流式的,让人受益匪浅啊。走出来第一感觉:我要去读Ph.D。

或许以前也说过,最佩服的人就是能 show the beauty of what he/she is doing 的人。我是个极度喜欢美丽的事物的人,不论是那个领域。只要让我看到事物的美丽,那么热情就随之而来,拦也拦不住。幸运或者不幸,昨天郁彬教授恰恰向我展示了这一点。5555,顿时热血沸腾,各种激动。强心针不能长打啊,我脆弱的小心脏真不一定承受的了啊。

郁彬有些很经典的话,摘录于此:

1. “我一直努力的目标,就是不跟我不喜欢的人在一起”。多么的洒脱!是啊,你永远不可能让每个人都喜欢你,你也没必要去喜欢所有人,更没必要讨好什么。做自己喜欢的事情、让自己活得开心,这样就很好了。

2. “经济学者要负责任”。无可避免的,提到了经济学(后面紧接着还提到了social network,连中两枪的我表示格外happy)。确实,一个经济学的研究应该更负责任一些,不要制定了一个经济政策之后,无论好或者不好,都没法评价。那么,这样的事情做下去没有任何的事后风险,确实是不甚公允的。对此,我表示深深的赞同,我也希望有朝一日的经济学研究可以更贴近社会民生、更好的服务于经济发展而不仅仅是某些IQ超高人群的brain game。而且,不仅仅是更好的应用,从theory的角度也应该给出更好的应用指导。

3. “最好的证明,就是假设和结论离得比较远,让人眼前一亮。要不,你干脆把结论假设出来好了!”。确实是,很多时候我们写paper,假设一大堆,尤其是理论经济学那边。是啊,你只要承认我的假设,后面的结论肯定没有问题。关键是,这假设有没有道理呢?如果假设完全是空中花园,结论再美好又有什么意义呢?另外,如果假设和结论就差那么一两步,这样的文章又有多大的价值呢?好的theoretical的文章确实应该是,假设和结论乍看不相干,然后通过巧妙的逻辑推导严密的证明出来。这才是有用的嘛。(话说,数学家们喜欢争执的是definitions,更严格咯)

4. “相关和漂亮,我可能会选择相关”。爱美之心人皆有之,郁教授也一直在强调 enjoy the process not the results,但是很多时候 beautiful researches 并不是那么容易就可以达到的。诚然,我最喜欢的research就是, simple and elegant,但是这样的研究从来都不会是天上掉下来的,一定是不断的努力最后得到的。因此,我这里姑且理解为不能“好高骛远”,很多时候还是要静下心来慢慢沉淀,一点点突破,聚沙成塔。研究考验的不仅仅是人的聪明程度,还有耐心和毅力。一切的美好都是值得等待的。

5. 交叉学科。关于交叉学科,郁教授说了很多。她给我们分享她自己的辛酸历程,这才是今天可以站在聚光灯下的源泉。Title不是决定性因素,但是有的时候为了达到自己的科研目标不得不曲线救国。否则,空有一身本事但是科研资源不会自己找上门来的。郁教授在美国数十载,一步一步都走得那么艰辛,果然通往成功的道路从来都不会是一帆风顺的。失之东隅,收之桑榆,谁也不知道今日的失去明天会如何的pay back,但也不必因为一时的得失过于欣喜或悲伤。这大概就是,不以物喜,不以己悲吧。人生是一场马拉松,每个时刻,大家都在不停的努力,都需要一直去努力。另外,领域的选择,确实没有任何“随大流”的必要。只有自己喜欢的,才能做的卓越。还是,

做自己喜欢的事。

超级喜欢郁教授的坦率、直接和真诚。对我们这些还在、或者刚刚迈出校门的孩子们来说,这样的交流确实弥足珍贵。从来没有一个环境会是完美的,只是不同的环境会在人生不同的阶段提供不同的营养。我多少觉得,自己离开学校来到industry一段时间,是非常值得的(无法判定对错),而一开始选择一份与人打交道更多而不是天天面对数据的工作,也是让我受益匪浅的。很多事情,都要一点点的慢慢积累,路还长着呢,何必心急。只要时间不曾被浪费,就好。保持一颗看风景的心情,无论身在何方。

Thank you so much, Prof. Yu. I will go back to school and continue my research dreams one day, and hopefully, that day is not far away.

Categories
读书有感

略读「数学之美」

继前段时间匆匆瞄过「浪潮之巅」后,注意到最近作者又出了另一本书,「数学之美」,便寻思着一定要有时间读一下。搜了一下才发现原来早在06-07年,这些就在google黑板报上连载了。唉,当年是有多么的孤陋寡闻,才会浑然不知--说不定那年要是看到了,就会直接投奔CS去了,自此和econ无缘了。哈哈,时间不能倒流,玩笑而已。

google黑板报上的版本不长,昨天从杭州回来的高铁上匆匆便略读完了。从自然语言处理,到输入法,到语音识别,到排名算法,到anti-spam;从隐性马尔科夫模型,到贝叶斯网络,到pagerank,到"简单而有效"的必杀刃...算法的魅力在作者笔下翩然而现,不禁勾起了我心底的贪婪。看到优雅的条件概率公式,恩,世界被数学描述的真的是挺美好的。

不知道为什么,接触了很多CS出身的出色的工程师们,一边惊叹于他们卓越的coding能力和创造、组合工具的能力,另一边却又不知为什么总隐约觉得他们的统计学背景并不是那么的solid-换言之,统计分析的sense远远比不上熟练应用算法的能力。虽说术业有专攻,可是算法这么迷人的东西...好吧,我总是对于美好的事物,不由自主的表现出贪婪和心向往之。

看看接下来的一段时间,如果确实无聊,可以考虑静下心来学一段时间的算法,很多算法模型都是知道个大概却没有那么确切,心里也难免惶惶不可终日。有的时候确实是眼高手低了,好多东西都没有深深地挖掘过。浅尝辄止不是一件好事恩,还是自己推导出来的东西更能铭记于心。

话说,明天的R会议,我会发挥娱乐大众的功用,讲一些统计分析好玩的应用。基本是上次给松鼠会讲的「别让数字吓到你」的升级版,加入了一些稍稍高级的分析方法,然后案例也有增有减。为了吸引观众,我只能无情的拿cos开刀,有一些关于cos的内幕会被无情的曝光,还有依照惯例现场观众会被调戏--嘻嘻,不调戏你们一番你们怎么能记得住呢?这才不枉我又花钱又花时间跑到北京来一趟嘛。希望明天我的状态会比较好吧,喵~