Categories
Uncategorized 我的生活状态

逻辑问题

最近真心觉得自己的逻辑训练有问题了...SQL总是写错...脑子一点都不清醒。

@Pompei@Pompei

不觉得自己是个很粗心的人啊,但事实证明犯错的时候可以一犯一连串...

貌似每年11月我总得惹出一些祸来。06年11月,删掉了某网站的数据库...10年11月,西班牙语考的一塌糊涂...11年11月...12年11月,连续的在一件工作上犯错犯错再犯错。郁闷啊郁闷。

真想把自己丢在冬天的水里好好清醒一下,或者干脆回娘胎重新出生一回,这个脑子完全处于不灵光的状态。还最近连续做梦,各种寝食不安,各种乱七八糟,各种...

谁可以告诉我应该怎么解救自己...我是不是应该做点什么练一练自己的耐心和细心了?好讨厌自己这样子的状态啊,好讨厌啊。最近来上海欢迎教育我一下,煞煞莫名其妙的浮躁。好失败的感觉...连最最基本的细致都做不到,好失败...这样子的状态,还能做好什么呢?好讨厌好高骛远的心理啊...

Categories
读书有感

≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(四)

照例继续本周笔记。这次我没啥废话了...

--------------笔记开始---------------

投影矩阵与消灭矩阵

首先是上次没证的若干OLS性质。基本都是公式。我就照抄原来econometrics做的笔记了。权当复习了...对计量有兴趣的、线性代数还不错的,建议去看《Microeconometrics- Methods and Applications》(?A. Colin Cameron / Pravin K. Trivedi )。

先定义两个矩阵,这两个矩阵会在某种程度上save your life while learning econometrics...投影矩阵和消灭矩阵。

复习一下,OLS估计量是 ,然后对应的Y估计量是。所以,我们定义投影矩阵P为,这样就有了。也就是说,我们对Y进行了一次投影,然后得到了一个估计值。当然定义投影矩阵并不仅仅是写起来比那堆X简单,而是投影矩阵本身有着一系列良好的性质。

我们先来看把P投在X上会怎么样。显然,,也就是说P不会改变X的值(本来就是把一个东西投到X上嘛~自己投自己怎么会有变化的嘛)。

然后呢,对P进行转置,则,所以接下来

再定义消灭矩阵M。很简单,我们定义M为,其中I为单位阵(对角线元素为1,其他为0)。这样M又有什么性质呢?显然,也就是说M对Y的效果是得到误差项。而与此同时,M对于X的作用就是,所以称为消灭矩阵嘛。继续,进行转置,则,所以我们还有

OLS估计值的方差

再次友情提醒,X不是随机变量,所以不要跟我纠结为什么没有条件期望公式之类的东西...

扰动项服从时,或者大样本下,OLS估计量的方差为:

这里为样本方差,所以其分布为: 。这样一来,就有了一个t检验:

大样本下,就直接用正态检验好了。此外,如果我们进一步的有更多的同时检验的约束条件,那就是联合检验F。这个就不赘述了...

高斯-马尔可夫定理

顺便还证了一下高斯-马尔可夫定理...这个不像OLS,每次我可记不住他的证明,每次都是现翻书...

我就直接抄wiki了。

选择另外一个线性估计量,然后C可以写为 ,则D为k*n的非空矩阵。

那么这个估计量的期望是 :

所以,为了保证 无偏,则必有 .

继续求方差:

是一个半正定矩阵,肯定要比大~得证。

变量选择与收缩方法

为了降低测试误差(减少函数的复杂度),有时候会放弃无偏性而进行变量选择。这里首先就是Ridge OLS(岭回归)。还是算一下这个东西好了。

岭回归就是对估计量另外加一个约束条件,所以很自然的想到拉格朗日乘子法。ridge regression的目标函数为,

可以重写为

这样我们就得到两个一阶条件:

,所以有:

这里还可以看出,的取值都是对应的。

Lasso则是把改成,已经没有解析解了...

至于为什么叫收缩方法,可以将X进行奇异值分解,然后可以得出的方差将变小...我就不写证明了,感觉这一块儿讲的也不是很透彻。