Categories
读书有感

≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(十六)

第十五章 随机森林(Random Forest)

终于讲到这个神奇的算法了...若是百年前的算命术士们知道有此等高深之术,怕是要写成一本《随机真经》作为武林宝典世代相传了吧?猜得准才是王道嘛。

p.s. 以前没看过的童鞋不要急,这节课只是从boosting直接跳讲到十五章,并不是已经快结课啦。

---------------

1.定义和算法

算法:

  • 1. For b = 1 to B
    • 生成一个自生样本(via bootstrap)
    • 生成树:
      • 随机选取m()个变量(相应的,取了m维子集)。一切的神奇都在于这里是随机降维的。
      • 生成树
  • 输出(即森林)。

随机森林算法的参数主要就是决策树的参数,用来控制树的生长的:保证每个叶子中的实例数不大于

应用

1) 回归 在回归的情况下采取均值,最终输出的就是.

2) 分类 分类的情况下进行投票,,得票最多的那类获胜。

参数

总结的来看,参数主要有如下几个:

  • B:试验次数。一般为几百到几千,所以是computational intensive.
  • m:降维的力度。作者建议回归的情况下采用,然后分类的情况下采用
  • :建议回归的时候设为5,分类的时候设为1(彻底分到底)

伪代码

其实上面已经写的比较清楚了...我只是再抄个伪代码过来而已。

select m variables at random out of the M variables

For j = 1 .. m

If j'th attribute is categorical

(see Information Gain)

Else (j'th attribute is real-valued)

(see Information Gain)

Let (this is the splitting attribute we'll

use)

If j{*} is categorical then

For each value v of the j'th attribute

Let = subset of rows of X in which . Let

= corresponding subset of Y

Let = LearnUnprunedTree

Return a decision tree node, splitting on j'th attribute. The number

of children equals the number of values of the j'th attribute, and

the v'th child is Childv

Else j{*} is real-valued and let t be the best split threshold

Let = subset of rows of X in which . Let

= corresponding subset of Y

Let = LearnUnprunedTree

Let = subset of rows of X in which . Let =

corresponding subset of Y

Let = LearnUnprunedTree

Return a decision tree node, splitting on j'th attribute. It has two

children corresponding to whether the j'th attribute is above or below

the given threshold.

2. 为什么要“随机”

bootstrap:通过多次重抽样减小误差。

考虑下面的情况:

1) 为随机变量,且,

(i)当相互独立的时候,,且

(ii)当相互不独立的时候,我们有。这样接下来就有

如斯,仅使用bootstrap的话压缩的是方差的第二部分,而随机选的的M可以减小样本之间的相关性,从而减少不同树之间的相关性。

2)OOB(out of bag)实例

OOB的概率:。这样就是说,在一次抽样中约有1/3的样本没有被抽到。

两次bootstrap抽样的话,样本约有40%的重叠,这样的重叠概率会影响到上面的(ii)中,两次抽样得到的样本重叠很高,相互不独立。

这样我们用67%的样本训练数据,用剩下33%来测试。

3. 其他应用

1)变量的重要性(feature selection,俗称的特征选择)

第一种方法可以和上节课梯度树那里的一样,用来刻画变量的重要性。

第二种方法则是比较有意思。对于一棵树,我们用OOB样本可以得到测试误差1。

OOB样本大概长成这个样子:

,样本量足够大的情况下

然后随机改变OOB样本的第j列:保持其他列不变,对第j列进行随机的上下置换,得到误差2。至此,我们可以用误差1-误差2来刻画变量j的重要性。当然这里loss function可以自己定。这里的大致思想就是,如果一个变量j足够重要,那么改变它会极大的增加测试误差;反之,如果改变它测试误差没有增大,则说明该变量不是那么的重要。(典型的实用主义啊!管用才是真,才不管他什么证明不证明呢!自从开始接触机器学习的这些算法,我真的是被他们的各种天真烂漫的想法打败的一塌糊涂,只要直觉上过得去、实际效果看起来比较好就可以了呢,规则真简单)。

2) 相似图(proximity plots)

除了用户变量选择之外,Random Forest也可以给出各个观测实例之间的相似度。

Proximity plots记作在一个叶子结点同时出现的次数,其实大致就是一个相关性矩阵的样子。思想其实就是,如果两个观测样本之间比较相关,他们在树分枝的过程中就比较难以分开,所以会经常一起出现。我们故而可以用一起出现的次数给这种相似程度打分。

树类算法

至此,我们大概一口气过掉了所有跟树相关的算法。

先是单一的决策树,然后是基于已有弱分类器的改良算法,比如梯度树,然后就是和梯度树不相伯仲的随机森林。我感觉随机森林真的是起了一个好名字,在我没学机器学习之前就听到无数人跟我说起随机森林,而梯度树却只是正儿八经开始看了才记住的名字...

下下周开始,会依次讲到神经网络和SVM...看来supervised learning就快拉上帷幕咯。

Categories
读书有感

≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(十五)

梯度树提升算法(GTBA, gradient tree boosting algorithm)

继续boosting类算法哎。小小预告一下,下节课会直接跳到随机森林,老师貌似是想把各种分类器都一下子讲到,然后有点前后照应的比较~真有意思,若是以前扔给我这种问题我肯定run一个logit regression就不管了,现在倒是有各种线性的、广义线性的、非线性的模型可以试着玩了,爽哎~

------------------

1. 自适应基函数模型

小小的复习一下上节课那个框架。

1. 数据。

2. 模型。 为基函数模型,其中成为基函数集合。为参数。

3. 损失函数(准则)。 为损失函数,然后就转为一个优化问题:

4. 算法。 前向分步算法。

  • 初始化:
  • 迭代:For m=1 to M,
  • 输出

在此框架之下,除了上节课的Adaboost之外,还可以套用多种其他的基函数,然后1)定义损失函数 2)给出迭代那一步的优化算法,就可以实现一种boost提升算法了。

2. 应用回归问题

先采用均方误差的损失函数,定义,这样就可以得到

然后定义:

。这里之后用回归树来求的话,就是梯度回归树算法。

梯度回归树提升算法

  • 初始化:
  • 迭代:For m=1 to M,计算。由用回归树求得.
  • 输出

3. GTBA,梯度树提升算法

先吹捧一下:这个算法就是此书作者本人开发的,然后已经搞出来了软件包,可以做回归也可以做分类,貌似效果还胜过随机森林(当然是作者自己给出的那些例子...)。

损失函数为可微的。

我们的优化目标是,也就是说实际上我们不是直接对进行优化,而是仅仅在所有观测的数据点上优化,所以仅跟在这些观测点上的值有关。感觉这里就是说,我们使用有限的观测到的信息来推断一个连续的函数,然后类推并用于其他未观测到的点。

定义:

,这样这个问题就从一个直接优化的泛函问题转化为一个优化多元函数的问题...而对于一个多元函数,我们可以直接用梯度下降法。定义梯度为:

,这样。类似的,我们可以定义,其中。累加起来,就是

,这里可以是常量也可以随着改变。

定义完梯度下降之后,就是GTBA算法了。

  • 初始化。
  • 迭代:For m=1 to M,计算,然后由用回归树求得
  • 输出

一些梳理

1. 参数。这里显然有如下参数需要设定:

  • M:迭代次数。这是这个算法最主要的参数,需要用Cross-validation来算。
  • J:树的大小。建议4-8,默认为6。
  • :收缩系数。这里可以加上这个参数,决定收缩的速度,0-1之间。
  • :次采样率,0-1直接,默认0.5。用于做subsampling。

2. 特征变量评价

这个算法的一大优势就是可以给出各个自变量的评价。比如的时候我们可能面临特征变量选择问题。

用t表示树中的节点,表示t节点所用的变量,表示t节点产生的均方误差的减小值。之后定义:

,可用这个值来刻画变量的重要性,从而进行特征评价。

3. 通用工具

该算法对于数据无特殊要求,有一批都可以扔进去试试,故可以作为其他算法的benchmark。

此外,从贝叶斯分类器的角度,我们要找的是,这样除了原有可以观测到的之上,还可以衍生出一个向量,即,第k个位置为1如果观测到的对应第k类。一下子就可以扩展整个数据集,也可以进一步对每类都赋一个概率,不单单是0-1这样。

Categories
读书有感

≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(十一)

上海的冬天越来越冷了,这门课也越来越临近这学期结束了。这节课公式推导不多,有也是那种烂熟于胸无数次的,所以可以稍稍歪楼,不时掺杂一点八卦什么的。

BootStrap

1. 定义

BootStrap的基本思想就仨字:重抽样。先开始八卦~

跟高斯窥探天机猜出来正态分布的密度函数表达式相似,Efron搞出来BootStrap的时候,大概也在偷偷的抿嘴而笑吧。“上帝到底掷不掷骰子呢?”,每次我们都在揣测天意,也是现在越来越有点理解为什么牛顿老先生晚年致力于神学了。每当我们猜中一次,就会有一个新的突破到来。BootStrap思想简单到如斯,以至于我的一位朋友在当高中老师的时候(可惜是美国不是中国),就尝试着跟 teenagers 介绍BootStrap思想了(貌似用的还是Econometrica上的一篇文章,我瞬间声讨“你们这群高中老师真凶残-_-||)——结果显然是我多虑了,那群熊孩子居然表示理解毫无压力!可见BootStrap这个东西是有多么的平易近人。什么测度论什么高等代数都不需要,会摸球就可以了!

顺便抄一下杨灿童鞋《那些年,我们一起追的EB》上的一段八卦:

五十多年前,Efron为 Stanford 的一本幽默杂志 Chapparal 做主编。那年,他们恶搞 (parody) 了著名杂志Playboy。估计是恶搞得太给力了,还受到当时三藩的大主教的批评。幽默的力量使 Efron 在“错误”的道路上越走越远,差点就不回Stanford 读 PhD 了。借用前段时间冰岛外长的语录:“Efron 从事娱乐时尚界的工作,是科学界的一大损失!”在关键时刻,Efron在周围朋友的关心和支持下,终于回到 Stanford,开始把他的犀利与机智用在 statistics 上。告别了娱乐时尚界的 EB,从此研究成果犹如滔滔江水,连绵不绝,citation又如黄河泛滥,一发不可收拾...

所以说嘛,天才之人做什么都是能闪光的,Efron从事科学界的工作,怕也是美国几亿人民周末娱乐的损失吧。好了,满足了你们这群越来越挑剔的读者八卦的胃口了,开始正儿八经的说BootStrap。

我们有观测数据集,然后对这N个样本,进行有放回的重抽样。每轮我们还是抽N个,然后一共抽B轮(比如几百轮,话说前几天weibo上有人问“如果给你一万个人,你要做什么”,放在这里我就要他们不停的抽小球抽小球抽小球,哈哈!)。这样就得到了新的观测样本

2. 应用

BootStrap几乎可以用来干各种合法的不合法的事儿,只要是跟数据估计有关的...这就如同你问一个画家,“什么最好画?”“上帝和魔鬼,因为大家都没有见过。”大家都没有那么明确的知道BootStrap的界限在哪里,所以BootStrap就被应用在各种跟估计有关的地方了。

在统计学习中,我们最常用的可能就是估计精度:对于每一个,我们都可以得到一个预测函数,然后就对于给定的,有B个预测值,这样就可以做直方图什么的,还可以排排序算出来的置信区间。

最大似然估计(MLE)

我们有一族密度函数,其中为参数集,可不止一个参数。按照概率的定义,我们有,而且

数据方面,我们有一组数据,为\emph{i.i.d}(独立同分布)。

这样就可以写出来似然函数: ,从而可以写出来对数似然函数:。接下来驾轻就熟的,我们就有最大似然估计量:

最大似然估计之所以这么受欢迎,主要是他有一个非常好的性质:一致性,即当,估计值收敛于真值

仅仅渐进一致还不够,我们当然更喜欢的是MLE的附加优良性质:渐进正态,即,其中称为信息矩阵,定义为。实际中,如果我们不知道真值,则会用估计值来代替正态分布中的参数。(没想到事隔这么多年,我居然又手动推导了一遍MLE...真的是,我跟统计的缘分怎么这么纠缠不断呀)。

MLE大都要求数值解的,少数情况下可以求解解析解。比如正态分布。

正态分布的密度函数为:,所以我们有对数似然函数:

还有一个特例是正态线性回归模型(Gauss-Markov),即,其中,这个就和OLS的BLUE性质蛮像了,MLE和OLS对于此种情形估计值是完全一样的。所以说高斯王子在搞出OLS的时候,也是各种深思熟虑过的...揣测上帝的“旨意”也不是件信手拈来的事儿的。

简单情形下,我们可以直接求得估计量的置信区间,但是在复杂的情形下,就只能用BootStrap了。人们的思路就从传统的数学推倒,越来越多的转换到计算能力了。有的时候稍稍感觉这更符合统计学的思维——归纳嘛,这也是统计学在computer

area和数学渐行渐远的表现之一么?

吴老师总结了一句话:BootStrap类方法,就是思想简单、实际有效,虽然不知道为什么...

模型平均

模型平均也是有点延续上面的BootStrap思想,就是我有很多重抽样出来的模型之后,要怎么平均这些结果来找出最优模型的。

1. Bagging方法。 这个就有点直截了当了。利用BootStrap,我可以,然后自然收集了一堆,所以简单一点就平均一下:

2. Stacking方法。这个就稍稍动了一点心思,直接平均看起来好简单粗暴呀,还是加权平均一下比较细致一点。所以:,其中权重。实际操作中,的选取也是一个蛮tricky的事儿。可以利用validation集来优化...

3. Bumpping (优选)方法。,即在所有的中,选择最好的那个,使得一定标准下的损失最小。

话说,Machine learning或者统计学习,无非就是四件事儿:数据(D)、函数族()、准则()、算法(A)。说来说去,每一样改进都是在这四个的某一方面或者某几方面进行提升的。

Categories
读书有感

≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(十)

一个东西写到10,总会多少有点成就感...只是不知道已经磨掉了多少人的耐心了呢?

此外这节公式密集,大家看着办吧...

-----------笔记开始------------

继续上一讲,先说说EM算法。

MM、EM和GMM

1. MM(混合模型)

(1) 定义:,其中,构成一个离散分布。同时有,且

(2) 隐变量

我们有数据,同时依据条件概率分布,有。记,则,其中

则有为x的边际分布。

(3) GMM(正态混合模型)

,我们有,且

(4) 对数似然函数和最大似然估计

对数似然函数写为。则我们要求的就是,其中

2. EM算法 (expectation maximum,期望最大方法)

(1) 迭代方法: 给定起始值,迭代出。那么问题就是,如何在已知的情况下,求

(2) E1步:求。函数形式已知,故可以求各种条件概率什么的。所以有:

E2步:计算,由于函数形式已知,我们可以计算并将移出来,所以换成线性形式。

(3) M步:求,这样就完成了迭代。需要证明的性质是:随着迭代,越来越大,且收敛。

(4) 定理:

证明:

其中,且,定义为两分布的KL距离。

所以,且。而由M步,,故有

在GMM的情况下,应用EM算法,则有:

(1) E1步:,可以直接计算。

(2) E2步:

(3) M步:注意有约束条件,所以使用拉格朗日乘子法:

,故有一阶条件:。从而,其中

还有一阶条件:,得到

最后,,有

对GMM而言,E步和M步在k=2的时候,求解过程可参见书上。

第七章:模型评估与选择

1. 概念: 我们有数据集,函数族和损失函数,这样得到最优的,然后求得

(有监督的学习)。之后就是对模型进行评估:的精度如何(使用测试集)?模型的选择就是的选择,使得测试误差比较小。

2. 方法:

(1) 数据充分:分成三块,1/2用来训练(train),1/4用来检验(validation),1/4用来测试(test)。其中validation

的概念是,在中,加入J函数来考虑函数族的复杂度,以避免过拟合。而validation就是来调正和选择这里的,再用train和validation重新训练模型。

最后,用test数据集,测试并且评估测试误差。

(2) 数据不充分:一种是cross-validation,分成k(比如5-10)份,极端的就是K=N,ave-win-out;另一种是bootstrap,后续章节详述。